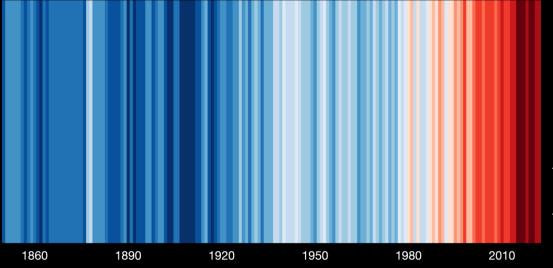
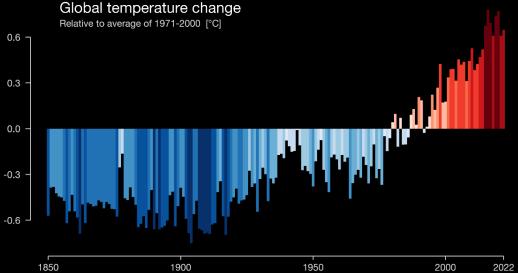


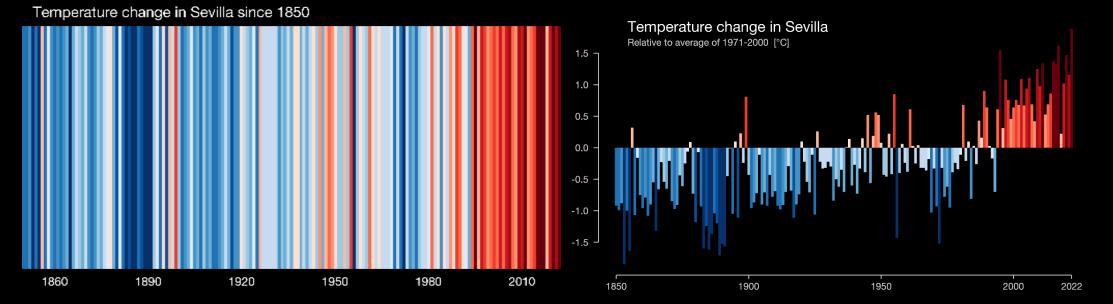
THE SZEWALSKI INSTITUTE OF FLUID-FLOW MACHINERY POLISH ACADEMY OF SCIENCES





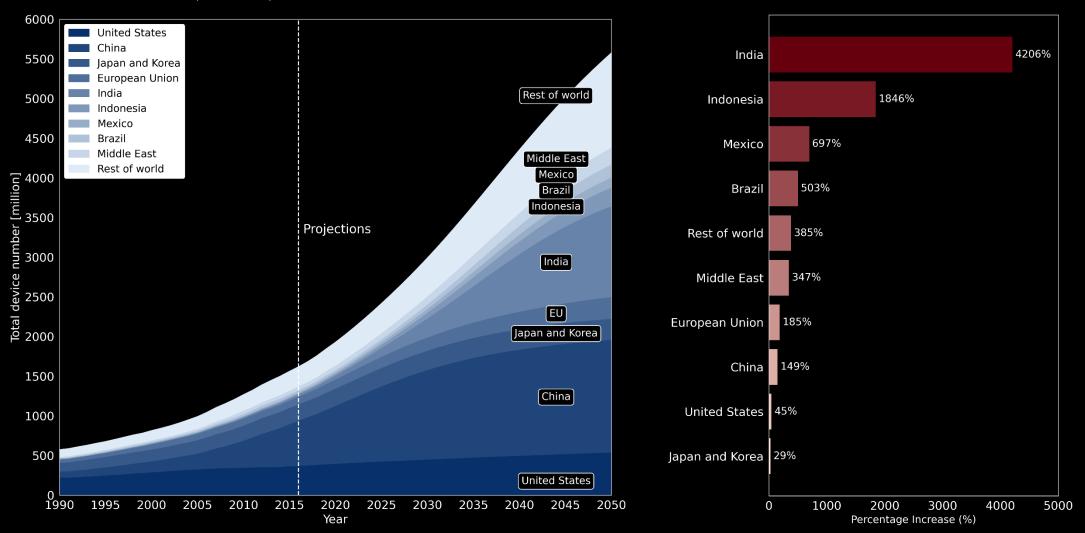

TURBINE DEPARTMENT CENTRE FO HEAT AND POWER NGINEERING


## COMPREHENSIVE ANALYSIS OF ORC-VCC SYSTEM FOR AIR CONDITIONING FROM LOW-TEMPERATURE WASTE HEAT


ŁUKASZ WITANOWSKI

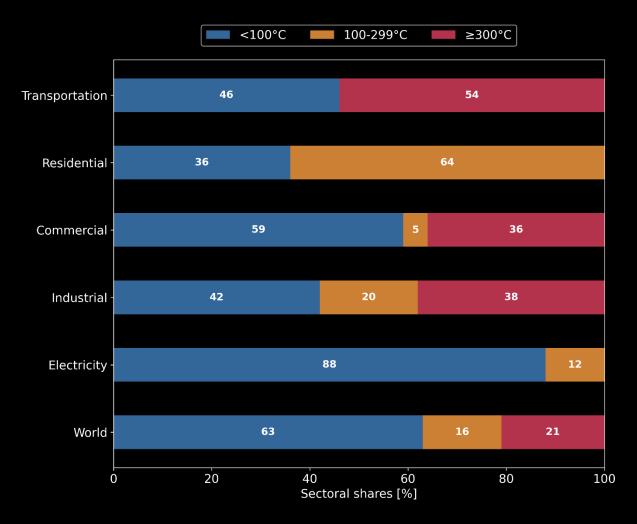
Technical session 3B "Thermodynamics of ORC systems#1" Chair: Piero Colonna

#### Global temperature change (1850-2022)









Graphics and lead scientist: Ed Hawkins, National Centre for Atmospheric Science, University of Reading., National Centre for Atmospheric Science, UoR. **www.showyourstripes.info [1]** 

Global air conditioner stock (1990-2050)



#### Source: IEA. This data is subject to the IEA's terms and conditions: **www.iea.org/t\_c/termsandconditions [2]** Graphics: Łukasz Witanowski

#### Sectoral shares of waste heat distribution



#### GLOBAL

- low temperature 43. 2 TWh
- medium temperature 11.0 TWh
- high temperature 14.1 TWh

#### INDUSTRIAL

- low temperature 3.8 TWh
- medium temperature 1.8 TWh
- high temperature 3.4 TWh

#### **ELECTRICITY GENERATION**

- low temperature 26.2 TWh
- medium temperature 3.6 TWh

Source: C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Estimating the global waste heat potential, Renewable and Sustainable Energy Reviews, 57 (2016) 1568–1579. doi:10.1016/j.rser.2015.12.192. [3] Graphics: Łukasz Witanowski





| PAN    |
|--------|
| IGDANS |

| TYPE                     | TECHNOLOGY<br>READINESS LEVEL               | ADVANTAGES                                                                                                                                                                  | DISADVANTAGES                                                                                                                                                                                                   | Ref. |
|--------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ABSORPTION SYSTEM        | System tests, <b>TRL9</b>                   | <ul><li>High efficiency.</li><li>Versatility of configurations.</li></ul>                                                                                                   | <ul> <li>High investment costs.</li> <li>Frequent maintenance required.</li> <li>High operational costs.</li> <li>Limited operating conditions.</li> <li>Complex installation.</li> </ul>                       | [4]  |
| ADSORPTION SYSTEM        | System tests, TRL9                          | Low noise level.                                                                                                                                                            | <ul><li>High investment costs.</li><li>Low efficiency.</li></ul>                                                                                                                                                | [5]  |
| EJECTOR SYSTEM           | System tests, <b>TRL9</b>                   | <ul> <li>Simple construction.</li> <li>Reliability.</li> <li>Limited maintenance requirements.</li> <li>Low investment and operational costs.</li> </ul>                    | <ul> <li>Low efficiency.</li> <li>Narrow operational characteristics.</li> <li>High working pressure often required.</li> </ul>                                                                                 | [6]  |
| THERMOELECTRIC<br>SYSTEM | Technology dvelopment,<br>TRL4/TRL5         | <ul> <li>Low failure rate.</li> <li>Compact size and low weight.</li> <li>Low levels of noise and vibration.</li> <li>Precise temperature control.</li> </ul>               | <ul> <li>Low efficiency.</li> <li>High investment costs.</li> <li>High operational costs.</li> <li>Limited applicability.</li> <li>Legislation restricting the use of HFCs in small cooling devices.</li> </ul> | [7]  |
| MAGNETOCALORIC<br>SYSTEM | Technology dvelopment,<br>TRL4/TRL5         | <ul> <li>Ability to adapt technology to specific needs.<br/>Wide operational range.</li> </ul>                                                                              | <ul> <li>Low efficiency.</li> <li>High investment costs.</li> <li>High operational costs.</li> <li>High electrical energy consumption.</li> </ul>                                                               | [8]  |
| ORC-VCC                  | Research to prove feasibility,<br>TRL3/TRL4 | <ul> <li>High efficiency across a wide operational range.</li> <li>Low electrical energy consumption.</li> <li>Low failure rate.</li> <li>Low operational costs.</li> </ul> | Sensitivity to partial efficiencies of compressors and turbines.                                                                                                                                                | [9]  |





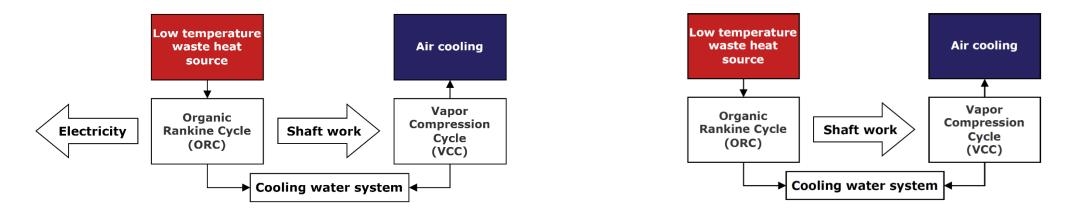
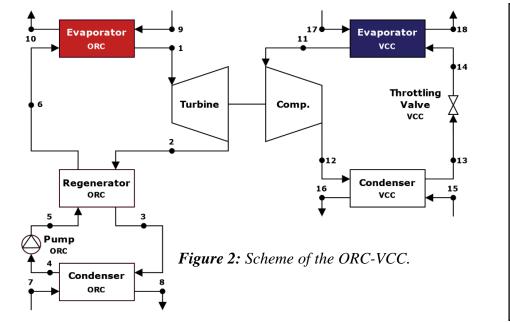



Figure 1: Conception of the ORC-VCC systems.


#### **Cooling and electricity generation**

- Versatility.
- High efficiency of the system.



- High efficiency of the expander and compressor.
- High efficiency of the system.
- Wide operating characteristics of the system.
- Simplicity.





METHODOLOGY

SEVILLE 2023 7<sup>th</sup> International Seminar on O.R.C. Power Systems

## **EFFICIENCY AND THERMODYNAMIC ASSUMPTIONS**

- Chilled water temperature (cold side) 8°C
- Chilled water temperature (hot side) 12°C
- Cooling water temperature (cold side) 15°C
- Heat source mass flow 1 kg/s
- Heat source temperature (hot side) 95°C
- Compressor efficiency 80%
- Pump efficiency 50%
- Turbine efficiency 80%
- Pressure losses not included.

• 
$$p_2 = p_{12}$$

• R1224yd(Z), R1233zd(E), R133yd(Z).

## **ECONOMICAL ASSUMPTIONS**

- Electricity prices for non-household consumers [10]:
  - Greece 0.3042 €/kWh
  - Italy 0.2525 €/kWh
  - Poland 0.1555 €/kWh
  - Spain 0.1879 €/kWh
- Cost of ORC-VCC system (up to 35 kWth) 30 000 €
- Discount rate (NPV analysis) 5%
- Operation time 8 years
- Annual operation time 8000 h

$$\begin{array}{ll} 1. & C_{i} = \left(P_{comp} - P_{p_{orc}} - P_{p_{cs}}\right) * AOT * C_{ei} \\ 2. & SPBT = C_{s}/C_{i} \\ 3. & NPV = \sum_{j=1}^{t} \frac{C_{ij}}{(1+d)^{j}} - C_{s} \\ 4. & \sum_{j=1}^{t} \frac{C_{ij}}{(1+IRR)^{j}} = C_{s} \end{array}$$





**Optimization** *"the act of making something as good as possbile" (Cambridge Dictionary)* 



Figure 3: Optimization concept.





## **OBJECTIVE FUNCTIONS**

| R1233zd(E)                                      | R1336mzz(Z)        | R1224yd(Z)            |
|-------------------------------------------------|--------------------|-----------------------|
| $f_0 = NPV$                                     | $f_6 = NPV$        | $f_9 = NPV$           |
| $f_1 = IRR$                                     | $f_7 = IRR$        | $f_{10} = IRR$        |
| $f_2 = \eta_{cyc}$                              | $f_8 = \eta_{cyc}$ | $f_{11} = \eta_{cyc}$ |
| $0.3 \times \text{NPV} + 0.7 \times \eta_{cyc}$ |                    |                       |
|                                                 |                    |                       |

## **PENALTY FUNCTIONS**

- Temperature. ٠
- Mass flow rate. .
- Turbine power > Compressor power ٠

|   |                        | PARAMETERS                                     | UNIT | LB | UB |
|---|------------------------|------------------------------------------------|------|----|----|
| • | <b>x</b> <sub>1</sub>  | Evaporator pinch temperature difference (VCC)  | K    | 3  | 10 |
| • | <b>x</b> <sub>2</sub>  | Degree of superheating in evaporator (VCC)     | K    | 3  | 10 |
| • | <b>х</b> <sub>3</sub>  | Degree of subcooling in condenser (VCC)        | K    | 3  | 10 |
| • | <b>X</b> <sub>4</sub>  | Regenerator pinch temperature difference (ORC) | K    | 3  | 15 |
| • | <b>x</b> <sub>5</sub>  | Degree of superheating in evaporator (ORC)     | K    | 3  | 15 |
| • | <b>x</b> <sub>6</sub>  | Degree of subcooling in condenser (ORC)        | K    | 7  | 15 |
| • | <b>X</b> <sub>7</sub>  | Evaporator pinch temperature difference (ORC)  | K    | 3  | 10 |
| • | <b>X</b> 8             | Condenser pinch temperature difference (ORC)   | K    | 3  | 10 |
| • | <b>x</b> 9             | Saturation temperature in evaporator (ORC)     | °C   | 50 | 85 |
| • | <b>x</b> <sub>10</sub> | Saturation temperature in evaporator (ORC)     | °C   | 25 | 55 |

Chilled water mass flow rate • X<sub>11</sub>

| UNIT | LB  | UB |
|------|-----|----|
| K    | 3   | 10 |
| K    | 3   | 10 |
| K    | 3   | 10 |
| K    | 3   | 15 |
| K    | 3   | 15 |
| K    | 7   | 15 |
| K    | 3   | 10 |
| K    | 3   | 10 |
| °C   | 50  | 85 |
| °C   | 25  | 55 |
| kg/s | 0.7 | 2  |
|      |     |    |

## $f_3 = 0$

$$f_4 = 0.5 \times \text{NPV} + 0.5 \times \eta_{cvc}$$

$$f_5 = 0.7 \times \text{NPV} + 0.3 \times \eta_{cyc}$$

- Optimization algorithm hybrid algorithm, Genetic • Algorithm (GA) + Pattern Search Method (PA).
- MATLAB script. •
- 11 parameters (decision variables). •
- 8 penalty functions. •





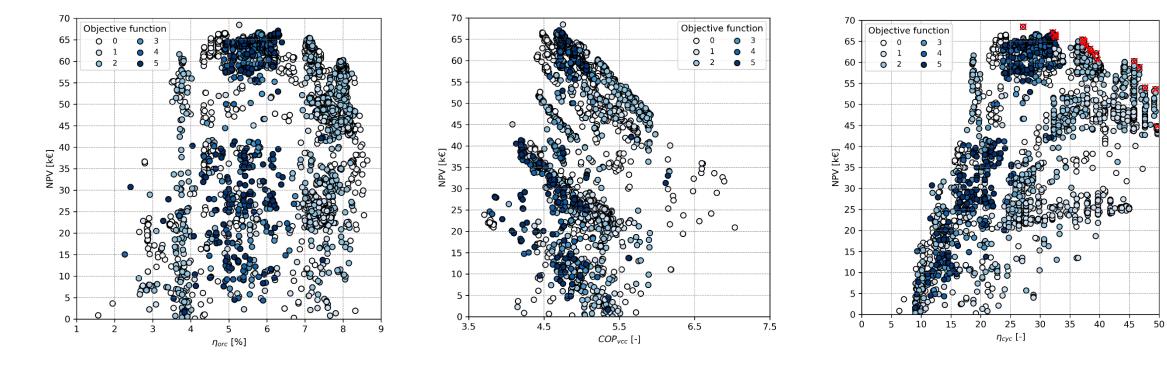



Figure 4: of NPV with norc (left), COPvcc (center) and  $\eta_{cyc}(\text{right})$ .





| ♠   ♠                                       | PARAMETERS                                                      | UNIT | LB  | 0     | UB |   |
|---------------------------------------------|-----------------------------------------------------------------|------|-----|-------|----|---|
| Evaporator<br>ORC 1<br>Evaporator 18<br>VCC | • x <sub>1</sub> Evaporator pinch temperature difference (VCC)  | K    | 3   | 9.82  | 10 | ł |
|                                             | • x <sub>2</sub> Degree of superheating in evaporator (VCC)     | K    | 3   | 5.24  | 10 |   |
|                                             | • x <sub>3</sub> Degree of subcooling in condenser (VCC)        | K    | 3   | 9.28  | 10 | ł |
| • 6 Turbine Comp. Valve X                   | • x <sub>4</sub> Regenerator pinch temperature difference (ORC) | K    | 3   | 13.97 | 15 | ł |
|                                             | • x <sub>5</sub> Degree of superheating in evaporator (ORC)     | K    | 3   | 4.65  | 15 | ł |
| 2                                           | • x <sub>6</sub> Degree of subcooling in condenser (ORC)        | K    | 7   | 8.38  | 15 | ł |
| ↓ ↓ ↓ ↓ ↓ 13                                | • x <sub>7</sub> Evaporator pinch temperature difference (ORC)  | K    | 3   | 5.81  | 10 | ł |
| Regenerator                                 | • x <sub>8</sub> Condenser pinch temperature difference (ORC)   | K    | 3   | 4.17  | 10 | ł |
|                                             | • x <sub>9</sub> Saturation temperature in evaporator (ORC)     | °C   | 50  | 64.9  | 85 | ł |
| 5 <b>1</b> 3                                | • x <sub>10</sub> Saturation temperature in evaporator (ORC)    | °C   | 25  | 41.26 | 55 | ł |
| Pump<br>orc                                 | • x <sub>11</sub> Chilled water mass flow rate                  | kg/s | 0.7 | 1.99  | 2  |   |
| 4<br>Condenser<br>7<br>ORC<br>8             |                                                                 |      |     |       |    |   |

ORC  

$$t_1 = 73.73^{\circ}C, p_1 = 447 \text{ kPa}$$
  
 $t_2 = 55.06^{\circ}C, p_2 = 210 \text{ kPa}$   
 $t_3 = 48.82^{\circ}C, p_3 = 210 \text{ kPa}$   
 $t_4 = 34.61^{\circ}C, p_4 = 210 \text{ kPa}$   
 $t_5 = 34.85^{\circ}C, p_5 = 447 \text{ kPa}$   
 $t_6 = 79.19^{\circ}C, p_6 = 447 \text{ kPa}$   
 $t_8 = 31.11^{\circ}C, t_{10} = 65.62^{\circ}C$ 

VCC  

$$t_{11} = 3.41^{\circ}$$
C,  $p_{11} = 44$  kPa  
 $t_{12} = 51.21^{\circ}$ C,  $p_{12} = 210$  kPa  
 $t_{13} = 29.97^{\circ}$ C,  $p_{13} = 210$  kPa  
 $t_{14} = -1.83^{\circ}$ C,  $p_{14} = 44$  kPa  
 $t_{16} = 31.11^{\circ}$ C

$$P_{tur} = 6.97 \text{ kW}$$
  
 $P_{comp} = 6.93 \text{ kW}$   
 $P_{p_{orc}} = 0.23 \text{ kW}$   
 $P_{p_{cs}} = 0.46 \text{ kW}$ 







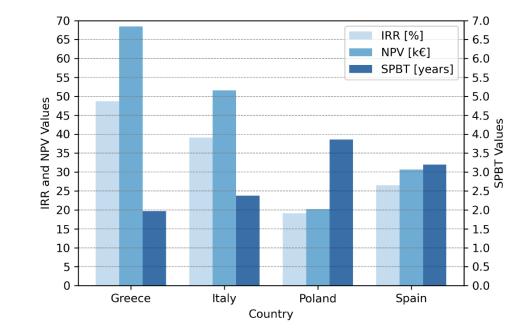
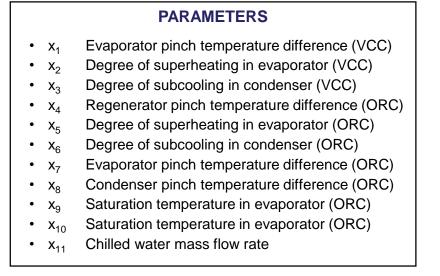




Figure 5: Comparison of economic indicators in selected UE countries.





| NPV                | 0.285                 | 0.006   | 0.055   | 0.005          | 0.077   | 0.013   | 0.035   | 0.028   | 0.062   | 0.489           | 1.029           | - 1.0 |
|--------------------|-----------------------|---------|---------|----------------|---------|---------|---------|---------|---------|-----------------|-----------------|-------|
| IRR<br>-           | 0.280                 | 0.011   | 0.056   | 0.009          | 0.070   | 0.015   | 0.039   | 0.029   | 0.074   | 0.497           | 1.036           | - 0.8 |
| η <sub>cyc</sub>   | 0.168                 | 0.036   | 0.021   | 0.109          | 0.026   | 0.003   | 0.185   | 0.014   | 0.606   | 0.145           | 0.530           | - 0.6 |
| η <sub>orc</sub>   | 0.002                 | 0.008   | 0.004   | 0.069          | 0.003   | 0.042   | 0.006   | 0.004   | 0.768   | 0.495           | 0.009           | - 0.4 |
| COP <sub>VCC</sub> | 0.696                 | 0.009   | 0.153   | 0.004          | 0.006   | 0.026   | 0.005   | 0.050   | 0.002   | 1.063           | 0.007           | - 0.2 |
|                    | <i>x</i> <sub>1</sub> | и<br>Х2 | и<br>Х3 | x <sub>4</sub> | и<br>Х5 | и<br>Х6 | י<br>אז | и<br>Х8 | и<br>Х9 | x <sub>10</sub> | x <sub>11</sub> |       |

Due to the need to reduce electricity consumption, methods of increasing the efficiency are being sought.

One of the possibilities is the use of low-temperature waste heat for electricity or/and cooling.

Simplified version of the system was investigated.

An in-house code was developed for cycle calculation.

Various novel working fluids are considered.

Single and multi-objective optimization was conducted.

The obtained cycle efficiency was 27.1%.

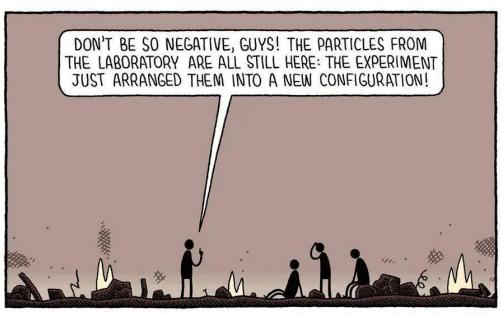
Simple pay back time was received less than 2 years.

## ORC-VCC SYSTEM FOR AIR CONDITIONING





- [1] www.showyourstripes.info, Ed Hawkins, National Centre for Atmospheric Science, University of Reading., National Centre for Atmospheric Science, UoR.
- [2] www.iea.org/t\_c/termsandconditions, The International Energy Agency.
- [3] C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Estimating the global waste heat potential, Renewable and Sustainable Energy Reviews, 57 (2016) 1568– 1579. doi:10.1016/j.rser.2015.12.192.
- [4] Z.Y. Xu, R.Z. Wang, Absorption refrigeration cycles: Categorized based on the cycle construction, Int. J. Refrig. 62 (2016) 114–136. https://doi.org/10.1016/j.ijrefrig.2015.10.007.
- [5] P. Goyal, P. Baredar, A. Mittal, A.R. Siddiqui, Adsorption refrigeration technology An overview of theory and its solar energy applications, Renew. Sustain. Energy Rev. 53 (2016) 1389–1410. https://doi.org/10.1016/j.rser.2015.09.027.
- [6] G. Besagni, R. Mereu, F. Inzoli, Ejector refrigeration: A comprehensive review, Renew. Sustain. Energy Rev. 53 (2016) 373–407. https://doi.org/10.1016/j.rser.2015.08.059.
- [7] S.A. Tassou, J.S. Lewis, Y.T. Ge, A. Hadawey, I. Chaer, A review of emerging technologies for food refrigeration applications, Appl. Therm. Eng. 30 (2010) 263–276. https://doi.org/10.1016/j.applthermaleng.2009.09.001
- [8] J. Romero Gómez, R. Ferreiro Garcia, A. De Miguel Catoira, M. Romero Gómez, Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration, Renew. Sustain. Energy Rev. 17 (2013) 74–82. https://doi.org/10.1016/j.rser.2012.09.027.
- [9] H. Wang, R. Peterson, T. Herron, Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle), Energy. 36 (2011) 4809–4820. https://doi.org/10.1016/j.energy.2011.05.015.
- [10] Electricity Price Statistics. Eurostat Statistics Explained, 2022.




THE SZEWALSKI INSTITUTE OF FLUID-FLOW MACHINERY POLISH ACADEMY OF SCIENCES





TURBINE DEPARTMENT CENTRE FO HEAT AND POWER NGINEERING



TOM GAULD for NEW SCIENTIST

# THANK YOU! GRACIAS!

lwitanowski@imp.gda.pl, witanowski@outlook.com

www.researchgate.net/profile/Lukasz\_Witanowski www.linkedin.com/in/lwitanowski